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Abstract

We consider a financial market model with a large number of in-
teracting agents. Investors are heterogeneous in their expectations
about the future evolution of an asset price process. Their current
expectation is based on the previous states of their “neighbors” and
on a random signal about the “mood of the market.” We analyze the
asymptotics of both aggregate behavior and asset prices. We give suffi-
cient conditions for the distribution of equilibrium prices to converge to
a unique equilibrium, and provide a microeconomic foundation for the
use of diffusion models in the analysis of financial price fluctuations.
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1 Introduction

In mathematical finance, the price evolution of a risky asset is usually mod-
elled as the trajectory of a diffusion process defined on some underlying
probability space. Geometric Brownian motion is now widely used as the
canonical reference model. As prices are generated by the demand and sup-
ply of market participants, this approach should be explained in terms of a
microeconomic model of interacting agents. Bick (1987) showed that geo-
metric Brownian motion can indeed be justified as the rational expectations
equilibrium in a market with homogeneous agents who all believe in this
kind of price dynamics, and who instantaneously discount all available in-
formation into the present price; see also Kreps (1982) and Borckett and
Witt (1991). On the other hand, Brock and Hommes (1997), Gaunersdorfer
(2000), Lux and Marchesi (2000) and Kirman (1998), among others, identi-
fied heterogeneity among traders as a key element affecting the dynamics of
financial price fluctuations. Heterogeneity in financial markets arises natu-
rally from different expectations about the future movement of asset prices
or from access to diverse information sets. At the same time, market partici-
pants are not isolated units: their decisions are often importantly influenced
by their observations of the behavior of other individuals or the prevailing
mood of the market.

In recent years there has been an increasing interest in agent-based mod-
els for financial markets which account for imitation and contagion effects in
the formation of asset prices. Day and Huang (1990), Lux (1995, 1998) and
Brock and Hommes (1997, 1998) described price processes in the context of
deterministic dynamical systems. These authors studied situations in which
two types of traders interact in the market. The first type, fundamentalists,
believes that the price of an asset is entirely determined by some underly-
ing fundamental value. The second type, typically called trend chasers or
chartists, tries to predict future asset prices through past observations. In
their models endogenous switching between the different types of market
participants can cause large and sudden price fluctuations. The fluctuations
may even exhibit a chaotic behavior if the effects of trend chasing become
too strong.

This paper provides a unified probabilistic framework within which to
model stock price dynamics resulting from the interaction of a large num-
ber of traders. Following an approach suggested by Föllmer and Schweizer
(1993) and Föllmer (1994), we view stock prices as a sequence of temporary
price equilibria. The demand of the agent a in period t depends on his cur-
rent individual state xat reflecting, for example, his expectation about the
stock price in the following period. The fluctuation in the distribution of
individual states will be the only component affecting the formation of price
equilibria. The microscopic process {xt}t∈N which describes the stochastic
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evolution of all the individual states is specified in terms of an interacting
Markov chain. In models motivated by statistical physics one usually has in
mind a local form of interaction; a mean-field interaction is typically viewed
as a mere simplification to circumvent the deeper problems related to local
interactions. But in an economic context, agents are often influenced by
signals about aggregate quantities. This calls for an additional global com-
ponent in the interaction. In the context of our financial market model, the
local and global dependence in the individual transition laws captures the
idea that agents’ expectations about the future value of a risky asset may
be influenced by both the previous expectations of some acquaintances and
the prevailing mood of the market.

The mood of the market is described by the empirical distribution of
individual agents’ states or, more completely, by the empirical field R(x)
associated with the configuration x. The microscopic process {xt}t∈N gen-
erates, via the macroscopic process {R(xt)}t∈N a random medium {%̃t}t∈N
for the evolution of the asset price process. Specifically, the logarithmic
price process {pt}t∈N obeys a linear recursive relation of the form

pt+1 = f(%̃)pt + g(%̃t)

in a random environment of investor sentiment. If the mood of the market
is already in equilibrium, then the long run behavior of stock prices can
be studied using standard results from the theory of stochastic difference
equations given in, e.g., Vervaat (1979), Brandt (1986) or Borovkov (1998).
Economically, however, such a stationarity assumption on the random envi-
ronment is very restrictive. It is more natural to investigate the dynamics
of financial price fluctuations under the assumption that the mood of the
market is out of equilibrium, but settles down in the long run.

In a first step we analyze the long run behavior of the macroscopic pro-
cess. We show that the dynamics on the level of aggregate behavior can
be described by a Markov chain. From this we deduce that the mood of
the market settles down in the long run if the interaction between different
agents is weak enough. In a second step we show that asymptotic stationar-
ity of the mood of the market implies asymptotic stationarity of the induced
asset price process if the effects of technical trading are on average not too
strong. Finally, we derive a continuous-time approximation of our discrete-
time price process. Proving a functional central limit theorem for stochastic
processes evolving in a non-stationary random environment, we show that
the discrete-time price process can be approximated in law by a diffusion
model if the mood of the market is asymptotically stationary.

This paper summarizes the results in Horst (2000). We introduce our
financial market model in Section 2 where we also study the dynamics of
both individual and aggregate behavior. The asset price process is analyzed
in Section 3.
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2 The Microeconomic Model

We consider a financial market model with an infinite set A of interacting
agents trading a single risky asset. Following Föllmer and Schweizer (1993),
the price evolution of the asset will be described by a sequence {pt}t∈N of
temporary price equilibria. In reaction to a proposed price p in period t the
agent a ∈ A forms an excess demand zat (p). Individual excess demand is
obtained by comparing the proposed price with some individual reference

level pat the agent adopts for period t. In this paper we study the simplest
case where individual excess demand takes the log-linear form

zat (p) := log pat − log p. (1)

All heterogeneity across agents is incorporated into reference levels. The
quantity pat depends on the state xat of the agent a chosen from a finite
set C. Specifically, individual benchmarks are given in terms of individual
combinations of a fundamentalist and a trend chasing component as

log pat = log pt−1 + α(xat )(logF − log pt−1) + β(xat )(log p− log pt−1) (2)

with non-negative coefficients α(xat ), β(xat ) ∈ [0, 1). This includes the case
where the agents can choose between a pure fundamentalist and a pure trend
chasing strategy. The expectation of a fundamentalist,

log pat = log pt−1 + cF (logF − log pt−1) (cF > 0), (3)

is based on the idea that the next price will move closer to the fair value F
of the stock. A chartist, on the other hand, takes the proposed price as a
signal about the future evolution of stock prices:

log pat = log pt−1 + cC(log p− log pt−1) (cC > 0). (4)

The quantities cF and cC may be viewed as a measure for the trading volume
of an individual fundamentalist and chartist, respectively.

The specific structure of individual reference levels yields zat (p) = z(p, xat )
for some function z : R×C → R. The actual stock price will be determined
by the market clearing condition of zero total excess demand. In equilibrium,
i.e., for p = pt, a chartist’s forecast is based on a past price trend.

2.1 The dynamics of the price process

We focus on the effects the fluctuations in agents’ characteristics have on
the dynamics of asset prices. Thus, the microscopic process {xt}t∈N, xt =
(xat )a∈A, will be the only component affecting the formation of price equilib-
ria. Its state space will be given by a suitable subset E0 of the configuration

space E := CA. For each x ∈ E0, the weak limit

%(x) := lim
n→∞

1
|An|

∑
a∈An

δxa(·) ∈M(C) (5)
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exists along a suitable sequence of finite sets An ↑ A. Here M(C) denotes
the class of all probability measures on C, and δxa(·) is the Dirac measure
concentrated on xa. In particular, the sequence of individual states {xt}t∈N
will induce the sequence of empirical distributions {%(xt)}t∈N.

Definition 2.1 We call %(xt) the mood of the market in period t.

In a financial market model with an infinite set of agents, it is reasonable
to view the set of agents who are actually involved in the formation of
successive prices as subsets of the much larger set of agents constituting the
entire economy. Hence we assume that the empirical distribution %̃t of the
states assumed by those traders who are active on the market at time t is a
random variable whose conditional law

Q̃(%(xt); ·) (6)

is specified in terms of a stochastic kernel Q̃ on M(C)1. The stock price pt
is then defined through the market clearing condition,∫

z(pt, x)%̃t(dx) = 0, (7)

of zero total excess demand. Introducing the aggregate quantities

f(%̃) :=
1 +

∫
(β − α)d%̃∫
βd%̃

and g(%̃) :=
logF

∫
αd%̃∫

βd%̃
,

we see that the dynamics of the logarithmic stock price process defined
through (1), (2) and (7) is described by the linear recursive relation

log pt+1 = f(%̃t+1) log pt + g(%̃t+1) (8)

in a random environment {%̃t}t∈N of investor sentiment. The environment
descries the stochastic evolution of the mood of the market. Our goal is to
derive conditions on the behavior of individual agents which guarantee that
the price process has a unique limiting distribution.

Remark 2.2 There is no reason to assume that the mood of the market
is already in equilibrium, i.e., that the driving sequence {%̃t}t∈N is ergodic.
Hence we are naturally led to consider situations in which the price process
evolves in a non-stationary random environment.

At times where |f(%̃t)| < 1 stock prices behave in a recurrent man-
ner. However, as illustrated by the following example, price fluctuations can
become highly volatile in periods where the impact of technical trading be-
comes too strong. This feature can be viewed as the temporary occurrence
of bubbles or crashes generated by trend chasing.

1Mathematically, this approach provides an additional smoothing effect. Under a mild

technical condition on Q̃ that does not alter the quantitative behavior of asset prices, the

sequence {%̃t}t∈N has better asymptotic properties than the process {%(xt)}t∈N.
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Example 2.3 Assume that the agents can either follow fundamentalist or a
trend chasing strategy, i.e., put C = {0, 1} and consider the reference values
defined in (3) and (4). Let %̃ct be the fraction of chartists in period t. Then

f(%̃) :=
1− cF (1− 2%̃c)

1− cC %̃c
and g(%̃) :=

cF (1− %̃c) logF
1− cC %̃c

.

If cC > 1, then the maps f and g have singularities. Asset prices become
highly unstable if the actual fraction of chartist is close to the critical value
%̃∗ = c−1

C . More generally, the price process behaves in a transient manner
in periods where the fraction of trend chasers is so large that

%̃ct >
cF

2cF + cC
.

Hence both a small cF and a large cC favors instability of stock prices. This
result is in accordance with the findings in, e.g., Lux (1998).

Despite the destabilizing effects the presence of chartists has on the for-
mation of stock prices, we shall see that the overall behavior of the price
process is ergodic if the impact of noise traders is on average not too strong,
and if the interaction between different traders is weak enough.

2.2 The Dynamics of Individual Behavior

The microscopic process will be described by an interactive Markov chain,

Π(xt; dy) =
∏
a∈A

πa(xt; dya),

on a subset E0 of the configuration space E = CA. The individual transition
probabilities will have an interactive structure, but the transition to a new
configuration is made independently by different agents. We consider the
case where the influence of the configuration x on the agent a is felt through
the local situation (xb)b∈N(a) is some neighborhood N(a) and through a
signal about the average situation throughout the entire population.

Introducing the notion of local interactions requires to endow the count-
able set A with the structure of a graph where the agents are the knots and
where interactive links between certain pairs of agents exist. In view of the
global component in the agents’ choice probabilities we restrict ourselves to
the case A := Zd := {a = (a1, . . . , ad) : ak ∈ N} where the agents are located
on the d-dimensional integer lattice. The reference groups take the form

N(a) := {b ∈ Zd : max
k
|bk − ak| ≤ l} for some l ∈ N.

In terms of the peer groups N(a) we can model situations where the agents’
expectations depend on the previous benchmarks of some acquaintances.2

2Note that an individual agent affects the next state of just 2ld other traders. Hence

no individual person is able to affect the whole market in one single period.
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But the behavior of traders also depends on the their information about the
prevailing market mood. We consider the simplest case where the agents
observe a common random signal s ∈ S := {s1, . . . , sM} about aggregate
behavior. The conditional probability πas (x; c) that the new state of the
agent a ∈ A is c ∈ C, given the signal s and the configuration xt, is described
in terms of a family of stochastic kernels πas from E to C.

Before the specify the agents’ transition probabilities, we illustrate our
notion of local and global interactions by means of the following example.

Example 2.4 Let C = {0, 1} and assume that the empirical average

m(x) := lim
n→∞

1
|An|

∑
a∈An

xa

associated to x ∈ E exists. We specify the transition probability of the agent
a ∈ A, given the signal s ∈ S ⊂ [0, 1] in terms of a convex combination,

πas (x; 1) = γ1x
a + γ2m

a(x) + γ3s, (9)

of his current state, the proportion ma(x) of ‘1’ in his neighborhood N(a),
and the signal s about the average m(x). For a fixed process {st}t∈N the law
of large numbers shows that almost surely

m(xt+1) = γ1m(xt) + γ2m(xt) + γ3st.

Thus, the sequence of empirical averages {m(xt)}t∈N may be viewed as a
Markov chain on the state space [0, 1] if st ∼ Q(mt; ·).

The interaction between different agents is homogeneous in that all
agents react in the same manner to the states of neighbors and to the signal
about aggregate behavior. In order to make this more precise, we introduce
the shift maps θa on E by (θax)(b) = xa+b.

Assumption 2.5 For any s ∈ S, there is a stochastic kernel πs such that

πas (x; c) = πs(θax; c) for all c ∈ C. (10)

The probabilities πs(x; ·) depend continuously on s, and

πs(θax; ·) = πs(θay; ·) if θax = θay on N(a).

We are now ready to specify the conditional distribution of the new
states, given a signal about average behavior. For a fixed pair (xt, st), the
distribution of the new configuration takes the product form

Πst(xt; ·) :=
∏
a∈A

πst(θaxt; ·). (11)

The full dynamics of the microscopic process along with the dynamics of
aggregate behavior is described in the next section.3

3Since our focus is on analyzing the impact of contagion and imitation effects on the
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2.3 The dynamics of aggregate behavior

Due to the local dependence of the individual transition laws on the current
configuration, the dynamics of the mood of the market typically cannot be
described by a Markov chain. In order to analyze the asymptotics of both
aggregate behavior and asset prices we need a more general mathemati-
cal framework which allows us to study convergence properties of locally
and globally interacting Markov chains on infinite product spaces. Such a
framework has recently been developed by Föllmer and Horst (2001).4

Definition 2.6 A probability measure µ on E is called ergodic, if it is in-
variant under the shift maps θa, i.e., if µ = µ◦θa, and if it satisfies a 0-1-law
on the σ-field of all shift invariant events.

We denote the class of all ergodic probabilities on E by M0(E). For
n ∈ N, we put An := [−n, n]d ∩ A, and E0 is the set of all configurations
x ∈ E such that the empirical field R(x), defined as the weak limit

R(x) := lim
n→∞

1
|An|

∑
a∈An

δθax(·),

exists and belongs to M0(E). The empirical field R(x) carries all macro-

scopic information contained in the configuration x ∈ E0. The empirical
distribution %(x) defined in (5), for instance, is given as the one-dimensional
marginal distribution of R(x), and the average action m(x) is given by

m(x) =
∫
E
y0R(x)(dy).

Assumption 2.7 The conditional law Q(R(x); ·) of the signal s ∈ S given
the empirical field R(x) is specified in terms of a signal kernel Q from M0(E)
to the finite signal space S. The kernel Q satisfies the Lipschitz condition

sup
s,R 6=R̂

|Q(R; s)−Q(R̂; s)|
d(R, R̂)

<∞ (12)

with respect to some metric d that induces the weak topology on M0(E), and

inf
R,s

Q(R, s) > 0. (13)

formation of stock prices we do not allow for a feedback from past prices into the be-

havior of agents. Feedbacks as well as elements of forward looking behavior (“rational

expectations”) are left for future research.
4All results in this section are stated without proofs. For details we refer to reader to

Föllmer and Horst (2001) or Horst (2002) and references therein.
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Remark 2.8 Our Assumption 2.7 excludes the case where the agents have
complete information about the mood of the market. This assumption is
justified if we think of the traders as being small investors. Mathematically,
condition (13) allows us to prove a convergence result for the mood of the
market without any restrictions on the dependence of the individual transi-
tion laws on the signal about aggregate behavior.

We are now in a position to describe the dynamics of both individual and
aggregate behavior in our financial market model. The conditional transition
probabilities Πs introduced in (11) along with the kernel Q determine the
transition probability of the microscopic process as

Π(x; ·) :=
∫
S

Πs(x; ·)Q(R(x); ds) for x ∈ E0. (14)

By Proposition 3.2 in Föllmer and Horst (2001), we have Πs(x;E0) = 1 if
x ∈ E0, and so Π can be viewed as a stochastic kernel on the state space
E0. The empirical field R(y) exists Π(x; ·)-almost-surely and takes the form

R(y) = u(R(x), s) :=
∫
E

Πs(y; ·)R(x)(dy). (15)

We choose E0 as the state space of our microscopic process, and denote
by Px the distribution of the Markov chain {xt}t∈N with start in x ∈ E0.
The process {xt}t∈N induces Px-a.s. the macroscopic process {R(xt)}t∈N.
The next theorem shows that the latter sequence may be regarded as a
Markov chain on the state space M0(E).5

Theorem 2.9 Under Px (x ∈ E0) the macroscopic process is a Markov
chain on M0(E) with initial value R(x). Is transition operator U acts on
bounded measurable functions f : M0(E) → R according to

Uf(R(x)) =
∫
f ◦ u(R(x), s)Q(R(x); ds)

where the map u : M0(E)× S →M0(E) is defined in (15).

Our aim is to show that the mood of the market converges in distribution
if the interaction between different agents is not too strong. In order to spec-
ify a suitable notion of weak interaction we introduce vectors rs = (rsa)a∈A
(s ∈ S) with components

rsa =
1
2

sup
{
|πs(x; c)− πs(y; c)| : xb = yb for all b 6= a, c ∈ C

}
.

5Due to the local dependence of the agents’ transition laws on the current configuration,

we can typically not expect a Markov property on the level of empirical distributions. This

motivated and justifies our general mathematical framework.
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The quantity rsa measures the dependence of the new state of agent 0 on
the current state of agent a, given the signal s. Asymptotic stationarity of
the mood of the market can now be guaranteed by limiting the strength of
interactions between different agents. More precisely, we assume that the
following condition is satisfied.

Assumption 2.10
α := sup

s

∑
a

rsa,0 < 1 (16)

The following simple example illustrates our weak interaction condition.

Example 2.11 Let us return to the situation analyzed in Example 2.3 and
assume that the individual transition probabilities,

πas (x; 1) = gs

(
{xb}b∈N(a)

)
,

are described in terms of differentiable maps gs : C |N(a)| → [0, 1]. If we
denote the partial derivative of gs with respect to xb by gbs, then our weak
interaction condition is satisfied if

max
s∈S

∑
a∈N(0)

max
xb∈C

∣∣∣gas ({xb}b∈N(0))
∣∣∣ < 1.

We are now ready to state the main result of this section. Its proof is
given in Horst (2002).

Theorem 2.12 Under Assumptions 2.5, 2.7, and 2.10 the following holds:

(i) There exists a unique probability measure Q∗ on the canonical path
space of the microscopic process such that the sequence {R(xt)}t∈N is
stationary and ergodic under Q∗.

(ii) Independently of the initial configuration x ∈ E0, the macroscopic pro-
cess {R(xt)}t∈N converges in law to a unique limiting distribution.

So far, we formulated conditions on the behavior of individual agents
which guarantee that the mood of the market settles down in the long run.
In the following section we apply this result in order to establish convergence
properties of the induced stock price process.

3 Dynamics of the stock price process

In our financial market model the price fluctuations can be highly volatile in
periods where the effect of trend chasing becomes too strong. In this section
we show that the overall behavior of the price process is nevertheless ergodic
if the destabilizing effects of chartists are on average not too strong.
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If the environment for the evolution of stock prices is already in equilib-
rium, i.e., if the sequence {%̃t}t∈N is ergodic, then the asymptotic behavior
of the price process can be analyzed using methods and techniques from
Brandt (1986) or Borovkov (1998). Economically, however, a stationarity
condition on the mood of the market is rather restrictive. On the other hand,
we derived conditions on the behavior of individual agents which guarantee
that the macroscopic process settles down in the long run. Now, our goal
is to show that asymptotic stationarity of the driving sequence is enough to
guarantee long run stability of the asset price process if the impact of trend
chasing is on average not too strong.

3.1 The discrete-time stock price process

Our stability result for the asset price process will be based on a convergence
theorem for linear stochastic difference equations in the non-stationary ran-
dom environments. In order to apply Theorem 2.2 in Horst (2001) we need
to show that the environment for the evolution of the price process has a
nice tail structure in the sense of the following definition.

Definition 3.1 Let ψ := {(At, Bt)}t∈N is a sequence of R2-valued random
variables defined on a probability space (Ω,F ,P). Let F̂t := σ ({ψt}s≥t) be
the σ-field generated by the random variables ψs for s ≥ t, and denote by

Tψ :=
⋂
t∈N

F̂t, (17)

be the tail-σ-algebra generated by ψ. We say that ψ has a nice tail structure

with respect to a probability measure Q on (Ω,F) if the following holds:

(i) ψ is stationary and ergodic under Q and satisfies

EQ log |A0| < 0 and EQ(log |B0|)+ <∞ (18)

where EQ denotes the expectation with respect to the measure Q.

(ii) The asymptotic behavior of ψ is the same under P and Q, i.e.,

P = Q on Tψ. (19)

Continuity of the total variation distance ‖ · ‖ along increasing and de-
creasing σ-algebras yields (Föllmer (1979), Remark 2.1)

lim
t→∞

‖P−Q‖F̂t = ‖P−Q‖Tψ . (20)

Hence, a sequence ψ satisfies (19) if and only if it becomes stationary in the
long run. Under a mild technical condition on the kernel Q̃ introduced in
(6), the latter condition allows us to show that the driving sequence

ψ̂ := {(f(%̃t), g(%̃t))}t∈N (21)

10



for the price process has a nice tail structure with respect to the unique
limiting measure Q∗ of the macroscopic process.

Remark 3.2 Under the assumptions of Theorem 2.12, the sequence of em-
pirical distributions {%(xt)}t∈N converges in law to a unique limiting mea-
sure. This, however, does not guarantee that the process {%(xt)}t∈N itself
has a nice asymptotic behavior. For this reason we assume that the set of
agents who are directly involved in the formation of stock prices is a “repre-
sentative” subset of the larger set A of traders.

The following technical results appear as Corollary 3.30 and Lemma 4.32,
respectively, in Horst (2000).

Lemma 3.3 For x ∈ E0, let Px be the probability measure on the canoni-
cal path space of the microscopic process such that Px[x0 = x] = 1. If the
stochastic kernel Q̃ from M0(E) to M(C) satisfies the Lipschitz condition

sup
s∈S

|Q̃(R; s)− Q̃(R̂; s)| ≤ Ld(R, R̂), (22)

similar to (12), then the following holds:

(i) The sequence ψ̂ has a nice tail structure with respect to Q∗.

(ii) The sequence ψ̂ is ϕ-mixing under both Q∗ and Px, and there exists a
constant M <∞ such that the n-th mixing coefficient is bounded from
above by Mαn. Here α is defined in (16).

Due to the first part of Lemma 3.3, the environment for the evolution of
the stock price process has a nice asymptotic behavior. Thus, the results in
Horst (2001) allow us to introduce a quantitative bound on the aggregate
effects of interactions which guarantees that the price process is driven into
a stationary regime. Stock prices are stationary in the long run if the mood
of the market settles down as t→∞, and if asymptotically the destabilizing
effects of trend chasing are weak enough.

Proposition 3.4 Suppose that the assumptions of Theorem 2.12 are satis-
fied. If Q̃ satisfies the Lipschitz condition (22), and if

EQ∗ log |f(%̃)| < 0 and EQ∗(log |g(%̃))+ <∞, (23)

then the price process converges in law to a unique limiting measure.

The first assumption in (23) may be viewed as a mean contraction con-
dition on the environment ψ̂. If the destabilizing effects of the environment
become too strong, i.e., if the mean contraction condition does not hold,
then prices tend to zero or go off to infinity.
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3.2 A diffusion approximation for the stock price process

To make the qualitative behavior of the asset price process more trans-
parent we apply in this section an invariance principle to the environment
for the evolution of the asset price process. This leads to an approxima-
tion of the price process (8) in continuous time. A Similar approach has
been taken by Neson (1990), Neson and Ramaswamy (1990) and Föllmer
and Schweizer (1993) to obtain diffusion approximations for price processes
evolving in an ergodic random environment from a sequence of suitably
specified discrete-time processes. We extend these results by replacing the
stationarity assumption by an asymptotic stability condition on the mood
of the market.

The convergence concept we use is weak convergence on the Skorohood
space Dd of all Rd-valued right-continuous functions with left limits on
[0,∞), endowed with the weak topology. Moreover, we denote by Law(X,P)
the distribution of a random variableX under the measure P, and w−→means
weak convergence of probability measures, and .

3.2.1 A Central Limit Theorem for Non-Stationary Sequences

The proof of our approximation result is based on a diffusion approximation
for the discrete-time linear stochastic difference equation

Pt+1 − Pt = AtPt +Bt (t ∈ N)

environment ψ = {(At, Bt)}t∈N defined on a probability space (Ω,F ,P).
We assume that ψ is nice with respect to some measure Q on (Ω,F) and
introduce discrete-time processes Pn = {Pnt }t∈N by

Pnt+1 − Pnt =
1√
n
AtP

n
t +

1√
n
Bt. (24)

We identify Pn with the continuous-time process (Pn[nt])t≥0. In terms of the
quantities

Xn
t :=

1√
n

[nt]∑
i=0

Ai and Y n
t :=

1√
n

[nt]∑
i=0

Bi, (25)

equation (24) translates into the stochastic differential equation

dPnt = Pnt−dX
n
t + dY n

t . (26)

Let us first consider the benchmark case where P = Q, i.e., the case
where ψ is stationary and ergodic. To this end, we denote by W = (W1,W2)
a two-dimensional Brownian motion defined on (Ω,F ,P). Under standard
assumptions on the environment ψ given in, e.g., Billingsley (1968),

Law(Zn,Q) w−→ Law(V ·W,Q) where Zn := (Xn, Y n) (27)
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and V is a suitable 2 × 2 matrix. If the process {Zn}n∈N is also “good” in
the sense of Definition 4.2 in Duffie and Protter (1992), then (27) implies

Law((Zn, Pn),Q) w−→ Law((V ·W,P ),Q)

where P = {Pt}t≥0 is the unique solution of the stochastic differential equa-
tion

dPt = PtdXt + dYt. (28)

The solution of (28) may be viewed as an Ornstein-Uhlenbeck process in a
random environment. Its qualitative behavior is investigated in Föllmer and
Schweizer (1993).

We are now going to prove a functional central limit theorem for diffusion
processes in non-stationary random environments.

Proposition 3.5 Suppose that ψ has a nice tail structure with respect to
a measure Q, that EQA0 = EQB0 = 0, that (27) is satisfied, and that the
sequence {Zn}n∈N is good under the original measure P. Then

Law((Zn, Pn),P) w−→ Law((V ·W,P ),Q).

Proof: Let us first show that Law(Zn,P) w−→ Law(V ·W,Q). To this end,
we fix an increasing sequence {σn}n∈N such that σn/

√
n → 0 as n → ∞.

For a given time horizon T > 0, and for each n ∈ N, we introduce the
two-dimensional process {Z̃nt }0≤t≤T by

Z̃nt :=

{
1√
n

∑[nt]
i=σn

(Ai, Bi) if σn√
n
≤ t ≤ T

0 otherwise.

We denote by d0(·, ·) and BD the Skorohood metric6 and the Borel-σ-field
on the space DR2 [0, T ], respectively. Then

d0(Zn, Z̃n) ≤
σn√
n

∣∣∣∣∣
(

1
σn

σn∑
i=0

|Ai|,
1
σn

σn∑
i=0

|Bi|

)∣∣∣∣∣ . (29)

Since P = Q on the tail-field generated by the sequence ψ and because ψ is
ergodic under Q, the series

1
σn

σn∑
i=0

|Ai| and
1
σn

σn∑
i=0

|Bi|

are P- and Q-almost surely convergent, and limn→∞
σn√
n

= 0 yields

lim
n→∞

d0(Zn, Z̃n) = 0 P-a.s. and Q-a.s. (30)

6For the definition of d0 see, e.g., Billingsley (1968), p. 113.
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Since the event {Z̃n ∈ B} (B ∈ BD) belongs to the σ-algebra F̂σn and
because ψ has a nice tail structure there exists a decreasing sequence {cn}n∈N
that satisfies

sup
B

∣∣∣P[Z̃n ∈ B]− P∗[Z̃n ∈ B]
∣∣∣ ≤ cn. (31)

Let us now denote by Q∗ the law of the Gaussian martingale V ·W under
the measure Q and fix a Q∗-continuous set B ∈ BD. Since

lim
n→∞

Q[Zn ∈ B] = Q∗[B]

equation (30) along with Theorem 4.2 in Billingsley (1968) yields

lim
n→∞

Q[Z̃n ∈ B] = Q∗[B].

Using (31) we see that

lim
n→∞

P[Z̃n ∈ B] = Q∗[B].

Therefore, (30) and Theorem 4.2 in Billingsley (1968) imply that

Law(Zn,P) w−→ Law(V ·W,Q).

Hence the assertion follows from the goodness property of the sequence
{Zn}n∈N under P. 2

3.2.2 An approximation result for the price process

We prove our approximation result for the price process under the additional
assumption that the environment for the evolution of asset prices is asymp-
totically described by mean-zero stochastic processes. This assumption can
be relaxed; for details we refer the reader to Chapter 4 in Horst (2000).

Assumption 3.6 the assumptions of Theorem 2.12 are satisfied with bounded
functions f, g : M(C) → R, and under the measure Q∗, we have that

EQ∗f(%̃) = 1, EQ∗g(%̃) = 0, E2
Q∗f(%̃) <∞, E2

Q∗g(%̃) <∞.

We are now ready to show how our sequence of temporary price equilibria
{pt}t∈N can be approximated in law by a continuous-time process (Pt)t≥0 if
the mood of the market settles down in the long run.

Theorem 3.7 If Assumption 3.6 holds and if the kernel Q̃ defined in (6)
satisfies the Lipschitz condition (22), then the logarithmic price process can
be approximated in law by a continuous-time process of the form (28).
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Proof: In the stationary setting, i.e., under the measure Q∗, an invariance
principle can be applied to the sequence

Xn
t :=

1√
n

[nt]∑
i=0

(f(%̃i)− 1) and Y n
t :=

1√
n

[nt]∑
i=0

g(%̃i),

due to Lemma 3.3 (ii) and Billingsley (1968). Thus, our assertion follows
from Proposition 3.5 if we can show that and that for any x ∈ E0 the
sequence {Zn}n∈N = {(Xn, Y n)}n∈N defined on (Ω,F ,Px) is good. To this
end, we introduce the σ-fields

Gt := σ ({f(%̃i), g(%̃i)} : 0 ≤ i ≤ t) (t ∈ N)

and processes M = {Mt}t∈N and A = {At}t∈N by

Mt :=

( ∑t
k=0(f(%̃k)− 1) +

∑∞
k=0 Êξ[f(%̃k+t)− 1|Gt]∑t

k=0(g(%̃k)− 1) +
∑∞

k=0 Êξ[g(%̃k+t)− 1|Gt]

)
(32)

and

At :=

( ∑∞
k=0 Êξ[f(%̃k+t)− 1|Gt]∑∞
k=0 Êξ[g(%̃k+t)− 1|Gt]

)
. (33)

By Lemma 3.3 (ii), the environment {%̃t}t∈N is ϕ-mixing under Px, and
the n-th mixing coefficient is bounded above by Mαn. Thus, the series in
(32) and (33) are almost surely absolutely convergent; see, e.g., Ethier and
Kurtz (1986). Furthermore, M is a vector of square integrable martingales
with respect to the measure Px and the filtration {Gt}t∈N. In terms of the
quantities Mn = {M[nt]}t≥0 and An = {A[nt]}t≥0 we have

Znt =
1√
n
Mn
t −

1√
n
Ant .

Since the martingales Mn have uniformly bounded expected jumps, it fol-
lows from Theorem 4.3 in Duffie and Protter (1992), that the sequence
{Zn}n∈N is good if

sup
n∈N

{Ex[|An|T ]} <∞

where |AnT | denotes the total variation of the process An on the time interval
[0, T ]. This, however, follows from standard estimates as in, e.g., Duffie and
Protter (1992), Example 6.3. 2

Extending a result of Brandt (1986) from discrete to continuous time,
Föllmer and Schweizer (1993) proved that logarithmic price converges almost
surely to an ergodic process (P̂t)t≥0 in the sense that

lim
t→∞

|Pt − P̂t| = 0 P-a.s.

In particular, the price process converges in distribution and it turns out
that the invariant distribution can be given in closed form; see Chapter 4 in
Föllmer and Schweizer (1993).
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